Biochemical Adaptations to Training

Matt Van Dyke
Covered in this Presentation

- Basics of stress and adaptation
 - Homeostasis
- Requirements of sport
- Immediate adaptations
 - Stress response systems
- Stable adaptations
- Systematic training
- Testing for desired adaptations
Definition of “Adaptation”

• Goal is always maintain homeostasis
 – Any external influence to some extent, changes the organism
 – Body will increase survival odds by any means
 • Even though inefficiency may result when being exposed to new stimuli

• All stress leads to some adaptation within the athlete
 • Dependent on intensity, duration, and type
 • Must determine which stressors are optimal for desired adaptations
Homeostasis

• Regulation - cellular, autonomic, hormonal, and/or neural
• Rigid vs. plastic variables
 – Rigid
 • Great change means organism failure and death
 • Temperature, pH, water, PO₂
 – Plastic
 • change to a great extent to ensure rigid variable consistency
 – Heart rate, blood vessel constriction/dilation
• Allostasis is how the body responds to maintain homeostasis
• Can improve homeostasis level with training
“Biochemical Adaptations”

• The changes to the multiple functioning systems within the organism to improve the ability to maintain internal milieu
 – Multiple systems involved
 – Goal is to maintain homeostasis through changing environments

• What it is and how we look at it in athletics
 – How adaptations occur in the organism
 • Improvements in performance due to long-term, cumulative changes
 • Training completed leads to these net effects
Biochemical Adaptations to Training

• Every training session/exercise triggers an acute adaptation process
 – Body adjusts functions to corresponding level of elevated energy metabolism

• Systematic repetitions create long-term, sustainable adaptations
 • Achieved through training resulting in structural and metabolic enhancements
 • Long-term planning is crucial to ensure proper stable adaptations are created

• Nature of the chosen exercises determines long-term training adaptations
 – Specific training strategies for desired adaptations
 • Intensity and duration
 – Both determine energy systems used
Determine the Needs of Every Athlete

• Knowing each exercise causes specific adaptations, coaches must understand physiology and requirements of each competitive event

• Use 3 categories for simplicity – all require different parameters

 – Maximal effort – Weight lifting
 • Near-maximal recovery from every rep
 • High force output required

 – Repeat sprint effort – many team sports need to optimize this ability
 • Dependent on multiple qualities gained through training

 – Cyclic effort – distance running
 • Relies on cardiac output, aerobic ATP production and tolerance to energy metabolites
Repeat Sprint Ability

• Main focus
 – Mixture of multiple sport activities
 – Requires functional systems to adapt optimally for success
 • Rapid force production
 • Energy availability and capacity
 • High recovery rate
 • Cardiac output and blood flow
 • Metabolite production and clearance
Immediate Adaptations to Stress

• Organism survival is of upmost importance

• Muscles need energy to do work

• Rapid mobilization of energy for increased work output (glucose, protein, and fat)
 – Glucocorticoids, glucagon, epinephrine and norepinephrine
 – Glycogen to glucose
 – Triglycerides to free fatty acids and glycerol
 – Protein to amino acids (non-exercising muscles) to liver glucose

• Increased heart rate, blood pressure, and ventilation to get energy to the working muscles
Immediate Adaptations to Stress (cont.)

• Body halts long-term building processes (digestion, protein synthesis, and immune system)
 – If organism doesn’t survive none of these matter

• Pain reception is blunted

• Improvements in sensory skills (senses and cognition sharpen)
Determinants of Immediate Adaptations

- Extent of response depends on multiple factors
 - Irritant’s intensity
 - Athlete’s current functional resources
 - Previous adaptations
 - Training age
 - Prior day’s training
 - Nutritional status
 - Arousal level
 - Genetics
 - Fiber composition

- Represented by temporary reactions and transformations
Sympathetic Nervous System

- Activated at onset of stress (pre-competition anxiety)
- Assists to complete the above stress responses
 - Stimulates secretion of epinephrine/norepinephrine
 - Dilate pupils
 - Improved vision capabilities
 - Increases concentration
 - Increases heart rate, blood pressure, peripheral muscular blood flow
 - Inhibits digestion
 - Inhibits immune system
Stress Response

• Stress response involves multiple systems

• Surviving in a changing environment depends on brain, endocrine, immune system, and their communication

• Understand all bodily systems function as one

• Communication is bi-directional
 – Immune system can influence release of hormones along with the activity of the nervous system and vice versa
HPA Axis

• Complex set of interactions among 3 endocrine glands
 – Major controller of stress reactions and bodily process regulation
 • Metabolic
 • Cardiovascular
 • CNS

• Responds to stress via sympathetic nervous system activation
 – Training, illness, cortisol levels, sleep
Hormones Involved in Stress Response

• Epinephrine/norepinephrine
 – Act within seconds of release
 – Generally stimulatory in nature
 • Mobilization of energy sources

• Glucocorticoids (Most well known is CORTISOL)
 – steroid hormone secreted by the adrenal gland
 – Often act similar to epinephrine
 • Regulation of metabolism of glucose
 – Take time for their effects to be realized

• These two account for a large percentage of stress response
Other Hormones Involved in Stress Response

- **Glucagon**
 - Assists epinephrine and glucocorticoids in increasing glucose circulation
- **Insulin**
 - Inhibited
 - Responsible for increasing storage
- **Growth Hormone**
 - Released to improve mobilization of energy
 - Building function blocked
 - Decreased sensitivity
Hormonal Response

• 3 Responses
 – Rapid
 • Increase seen in first few min of exercise
 • Epinephrine and norepinephrine increases seen in 6 sec. of max effort
 • Due to higher nervous centers (HPA axis)
 – Moderate
 • Gradual increase in production
 • May continue beyond exercise time
 – Lagged
 • Delayed response in hormone increase
 • Dependent upon cumulative effects of exercise
 • Determines final blood hormone concentrations
Rate of Hormonal Response

Rate of Response

<table>
<thead>
<tr>
<th>Rate of Response</th>
<th>Rapid</th>
<th>Moderate</th>
<th>Lagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catecholamines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corticotropin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucagon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcitonin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Stress Stimulus
Determinants of Hormonal Response

• Training age
• Nutritional status
 – Glucose availability
• Temperature
 – Hydration regulation
• Hormonal threshold
 – Closely related to the anaerobic threshold
 • close relationship between lactate levels and cortisol
• Exercise Stimulus
 – Increased recruitment enables greater hormone-tissue interaction
• Duration is a greater determinant than intensity
 – Limitations of athlete to maintain high intensities
Other/Metabolic Responses

• Increase glycogen phosphorylase (increase glycogen breakdown)
 – calcium and sodium ions, along with acetylcholine all increase glycogen phosphorylase activity
 • all involved in muscle contraction (neural or ion channels)

• PFK also increases with increased ADP and AMP
 – also responsible for glucose use

• Lactate inhibits a number of enzymes responsible for creating glycogen
 – want to keep resources mobilized
Stable adaptations

- Reflects the net cumulative training effect
 - Adaptation is specific to training executed
 - Max speed vs. conditioning example
- Potential stable adaptations
 - Cardiac
 - Muscular/CT
 - Metabolic
 - Endocrine
 - Nervous system
- Quantitatively measured by athletic condition and top form
 - Testing to determine adaptations
Cardiac adaptations

• Foundation for all performance parameters
• Improved efficiency through training
 – Central
 • Increased stroke volume
 • Improved contraction force/velocity
 – Peripheral
 • Improved oxygen kinetics
 – Increased hemoglobin concentration
 – Increased capillary density
 – Improved O₂ extraction
• Fick Equation
 – \(VO_2 = SV + HR - aVO_2\text{diff} \)
 • \(VO_2 \) still not perfect predictor of RSA
Muscular/CT adaptations

- Tissue Remodeling
 - Improved myosin-attachment
 - Increased titin activity?
- Muscle contractile steps
- Muscle action occurs at a higher rate
- Stretch shortening cycle
Metabolic adaptations

- Increase cellular resources due to training reduces need for increased systemic mobilization of resources during vigorous exercise
 - Body becomes “better prepared” to a stimulus
 - Homeostatic reactions may also diminish to some extent
 - Potential decrease in exercise-induced hormonal responses or avoid them altogether
- Oxidative
- Glycolytic
- Cr-P
Nervous system adaptations

• Rate of force development
 – Crucial in high-velocity movements

• Two phases
 – Early – neural
 • Recruitment
 – Selective in learned skill
 • Rate coding
 – Doublet occurrence
 • Synchronization
 – Late – muscular
 • Already covered
Stable endocrine adaptations

• Related to change in threshold intensity
 – Threshold intensity of exercise is shifted to a higher level
 • Need higher intensities to achieve hormonal response
 – In maximal intensity cases hormonal responses are magnified in athletes
 • Actual training-induced changes in the hormone response to exercise depend on a combination of various alterations in the organism

• Training induced adrenal hypertrophy is associated with an increased number of mitochondria
 – Duration plays major role in hormonal response
 • mitochondria and endoplasmic reticulum are the main sites of biosynthesis of glucocorticoids
Stable endocrine adaptations

- Acute responses more critical to tissue remodeling
- Many studies have not shown a significant change during resistance training despite adaptations
 - Other factors play a large role in stable adaptations
 - Non-training stress factors
 - Nutrition
 - Overtraining and detraining
 - Circadian patterns of hormone secretion
Stable training program

• Systematic, specific stress model
 – Block periodization
 • Residual effects

• Modified undulated training

• Specific muscle action training
 – Eccentric and Isometric stronger
Testing Protocols

• Transfer of training
 – Test for adaptations related to qualities used in competition

• Tests must be specific for desired adaptation
 – HR recovery
 – Repeat sprint ability
 – Lactate tolerability/clearance
Heart rate recovery

- Efficiency of cardiac/circulatory components
- Adaptations over specific training cycles
- Vital role in recovery aspect
Repeat sprint ability

- Maximal intensity and Recovery rate
 - Similar to team sports

- Percent change in sprints

- 10 – 30 yard sprints

- Visual for athlete
Lactate tolerability/clearance

- 2 – 300 yard shuttles
- 3-5 min recovery between
- Current lactate system status
Conclusion

- Body adapts specifically to stressors applied
- Determine needs of each sport
- Acute endocrine response to stress is more important for stable adaptations
- Stable adaptations are the net effects of training
- Maximize adaptations using the specific stress training model
- Test athletes appropriately based on needs
References

References