Training for Optimal Power Development

Matt Van Dyke

Overview

- Introduction to power aspects
- Pre-cursors to power availability
- Maximal intent
- Creating high levels of readiness
- Optimal loading
- Quality training
 - Maintaining velocity/minimizing fatigue
- RFD/RFA/transfer of training
- Athlete individualization

Introduction to Power

- Power = Force * Velocity
 - Force-Velocity Curve (blue) is linear
 - Power (red) is maximized with both force and velocity
- Primary goal of performance coach is to create "power" in competitive event
 - Transfer of training key
 - Strong athletes in weight room, but not on field are not successful
 - Goal is usable strength

Introduction to Power

• Same power can be realized in different methods

- Power (a) = FORCE x velocity
- Power (b) = force x VELOCITY
- Optimal Power = FORCE x VELOCITY
- Must understand goal of programming
 - "Keep the goal the goal"
 - Not only power, but how that power was achieved in training

Pre-Cursors to Power Availability

- Prior to creating power, must have certain qualities
- General/absolute strength
- Efficient/powerful stretch-shortening cycle
- "Athlete function"
- CNS readiness

General/Absolute Strength

- Foundation for all force production
- Power ultimately the expression of strength (force)
- Shift F-V curve upwards and to the right

Efficient/Powerful SSC

- Training must relate to performance requirements
 - All dynamic movements require SSC
- SSC efficiency and power remains ultimate goal
 - Strength work only \rightarrow muscles are developed to a greater extent than the tendons
 - Truck with mountain bike shocks
 - Tendon not able to maintain
 - Speed/plyo work only \rightarrow tendons more trained than muscles
 - Mountain bike with monster truck shocks
 - Muscles eventually unable to keep up

Determining Efficient/Powerful SSC

- Countermovement vs. static jumping
 - Transfer of force through SSC vs. muscle force production
 - Prefer 10% difference personally
- If difference is less than 10%
 - <u>Relatively</u> strong and weaker tendons
 - Force of a truck, with bike shocks
- If difference is greater than 10%
 - Springy athlete, but muscles <u>relatively</u> weak
 - Mountain bike with monster truck shocks
- Know the goal of your programming based on time of year

Athlete Function

- Without structure, body enters "protect" mode
 - State of "explosion"
 - Triplanar loading
 - Foot function
- <u>Hip Stability Progressions</u>
- Direct relationship to CNS and power availability

	Athlete 1	Athlete 2
Average	32.5%	24.1%

Pre-cursors to Power Availability - CNS Readiness

- CNS readiness
 - Central governor of entire system
 - Without it, maximal force and/or velocity decrease
- Place emphasis on quality training with maximal intent
 - Focus on "explosive" muscle development, not as much hypertrophy
 - Extent depends on sport requirement
 - "Mass" based sport such as football will differ
 - General to specific with programming (mass to power)
 - "Quality" of training

Maximal Intent

- Without intent (velocity), maximal power at any load is not possible
 - Maximal intent is just as important as the actual velocity (1-4)
 - Neural adaptations with intent (early phase of RFD)
 - Goal is to create "power" at all points along the F-V curve
- Adaptations ultimately determined by effort exerted by athlete in training
 - If no intent, no/less stress experienced at all levels
- Always consider "quality" of training
 - Intent is not available with sets to failure
 - Driving wrong stimulus if going this far
 - 20% cutoff vs. 40% cutoff ⁽⁵⁾
 - Same strength gains
 - Reduced type IIx fibers in 40% group
 - Capacity training leads to reduced power output potential

Maximal Intent - Measurement

• Velocity based training (VBT)

- Athletes are competitive, drives intent ⁽⁶⁾
- Also provides feedback of CNS readiness for that day
 - If "down" is it optimal to train power?
- Appropriate velocity measurement
 - Non-ballistic exercises
 - Both acceleration and deceleration in movement (typical barbell movements)
 - Use mean velocity
 - Ballistic exercises
 - Concerned with exit velocity (jumps, throws, Olympic movements) ⁽⁷⁾
 - Determines distance traveled by projectile
 - Use maximal velocity

Maximal Intent - VBT Measurement

- Ballistic exercises elicit greater velocities through nearly entire ROM ⁽⁸⁾
 - Ideal for power production
 - Not always safe as loads increase
 - However, can utilize accommodating resistance
 - Training at 55% 1RM is only 55% at weakest point, may not be training power optimally through entire ROM

Athlete Readiness - PAP

- CNS drive is critical for optimal power development
 - Pre-cursor of power
- "Ramp up" CNS through the use of post-activation potentiation (PAP)
 - Requires full engagement of the nervous system
 - Must be implemented in a manner that does not induce fatigue
 - Maximal intent in brief amount of time/reps and adequate rest

PAP Exercise Guidelines								
Maxin	nal Isometric Exe	ercises	High Load Exercises					
Sets	Time	Load	Sets	Reps	Load			
2-3	5-7 sec.	Maximal	2-3	1-3	85-100%			

Athlete Readiness -Physiological Changes from PAP

- Increase in high threshold motor unit recruitment ⁽⁹⁾
 - Greater utilization of explosive muscle fibers
 - Allows greater force in a rapid fashion
- Decrease in pennation angle ⁽⁹⁾
 - Smaller pennation angle allows for greater mechanical advantage for muscle to act upon the tendon
- Increase in calcium sensitivity ⁽⁹⁾
 - Potentiation of subsequent muscular contractions

- Increased in rate coding ^(10,11)
 - Speed of signal being sent to muscle
 - Increased "doublets" or reduced time between impulses sent during contraction
 - Increases speed and power of contraction
- Increase in central drive ⁽¹²⁾
 - Nervous system is "turned on" or "primed"
 - Coordination of muscle activity by CNS
 - High level force exertion is a skill in which muscles must be appropriately prepared for

Athlete Readiness - Exercise Selection

- PAP exercises can be programmed to fit a desired outcome
 - Pair with major exercise of upcoming session
 - Personally avoid axial loading due to maximal intent
 - General strength
 - Low position Iso work
 - Improving strength at weakest point
 - Critical joint angle
 - Designed to optimize transfer of force through SSC
 - Improve ballistic concentric power
- As competition phase approaches, increase specificity
 - Depends on level of athlete

Optimal Loading

- Optimal load varies on exercise and athlete
- "Optimal" also depends on desired outcome
 - Recall goal is to maximize power in the competitive movements
 - More advanced athletes require higher velocity power for transfer
 - Less advanced athletes need more force based power
 - Can create this even in a team setting
 - Elite group
 - OC work, timed sets, lower %
 - Advanced group
 - OC work, timed sets, higher %
 - Basic group
 - Full range work, reps, higher %

Exercise Implemented	Optimal Load Range			
Bench Press	40-50% of 1RM			
Bench Press	30-45% of 1RM			
Bench Press and Throw	50-70% 1RM			
Bench Throw	55% of 1RM			
Bench Throw	15-45% of 1RM			
Jump Squat	55-59% of 1RM			
Squat Jump (Static and CMJ)	10% of 1RM			
Half-Squat	60-70% of 1RM			

Optimal Loading - Categorizing

- Base programming on desired outcome
 - Strength-Speed
 - Strength listed first, thus the priority
 - Adaptations to "force" portion of F-V curve
 - Speed-Strength
 - Speed becomes priority, but still moderate force
 - Speed
 - Adaptations to "velocity" portion
 - Most transferrable, but must have ability to produce force
- Use of "Block" training to cover all aspects and increase transfer when desired

%	Velocity	Rel. Power	
1	0.3	0.56	Absolute Strength
0.95	0.37	0.65	AbSt
0.9	0.45	0.75	AbSt
0.85	0.52	0.82	AbSt
0.8	0.6	0.89	AbSt
0.75	0.67	0.93	Strength Speed
0.7	0.75	0.97	StS
0.65	0.82	0.99	StS
0.6	0.9	1	OPTIMAL POWER
0.55	0.98	0.99	Speed Strength
0.5	1.05	0.97	SSt
45	1.13	0.94	SSt
0.4	1.2	0.89	Explosive
0.35	1.28	0.83	Exp
0.3	1.35	75	Exp
0.25	1.43	0.66	Exp
0.2	1.5	0.56	Exp
0.15	1.58	0.44	Speed
0.1	1.65	0.31	Spd
0.05	1.73	0.16	Spd
0	1.8	0	Spd

Optimal Loading

- Regardless of load, still maintain maximal intent
 - Early phase RFD adaptations max with intent
 - Maximize power at each velocity trained

Absolute Strength			
Back Squat	80-100% 1RM		
Leg Press	90-100% 1RM		
Deadlift	90-100% 1RM		
Strength-Speed			
Clean Pull	80% 1RM		
Deadlift	80% 1RM		
Squat Jump	> 70% of BW		
Countermovement Jump	> 80% of BW		
Speed-Strength			
Squat Jump	20-30% of BW		
Countermovement Jump	35-45% of BW		
Single Leg Squat Jump	BW		
Single Leg Countermovement Jump	10% of BW		
Clean Pull Jump	65% 1RM		
Explosive			
Depth Jumps	BW		
Squat Jumps	BW		
Single Leg Countermovement Jump	10% of BW		
Maximal Vertical Box Jump	BW		
Speed			
Maximal Roller Push Off	< BW		
Countermovement Jump with Arms	BW		

Quality Training -Minimize Fatigue

- With fatigue accumulation, velocity decreases
 - Must run fast in order to improve velocity
- Focus on quality of training
 - Capacity training (energy system development) early in annual plan
 - Continue to "keep the goal, the goal"
 - As reps increase, ability to recover decreases
 - Particularly with repeated, <u>maximal</u> intent
- Dependent upon each athlete's capacity (energy system)

Athlete 1						Athlete 2					
Set #	Load (% of 1RM)	Bar Velocity (m/s)	% Drop- Off	Adaptation	Set #	Load (% of 1RM)	Bar Velocity (m/s)	% Drop- Off	Adaptation		
Set 1	70	0.96	0%	Quality Power (Desired)	Set 1	70	0.96	0%	Quality Power (Desired)		
Set 2	70	0.96	0%	Quality Power (Desired)	Set 2	70	0.96	0%	Quality Power (Desired)		
Set 3	70	0.95	1%	Quality Power (Desired)	Set 3	70	0.96	0%	Quality Power		
Set 4	70	0.95	1%	Quality Power (Desired)	Set 4	70	0.96	0%	Quality Power (Desired)		
Set 5	70	0.95	1%	Quality Power (Desired)	Set 5	70	0.96	0%	Quality Power (Desired)		
Set 6	70	0.94	2%	Quality Power (Desired)	Set 6	70	0.95	1%	Quality Power (Desired)		
Set 7	70	0.94	2%	Quality Power (Desired)	Set 7	70	0.95	1%	Quality Power (Desired)		
Set 8	70	0.94	2%	Quality Power (Desired)	Set 8	70	0.95	1%	Quality Power (Desired)		
Set 9	70	0.94	2%	Quality Power (Desired)	Set 9	70	0.95	1%	Quality Power (Desired)		
Set 10	70	0.94	2%	Quality Power (Desired)	Set 10	70	0.95	1%	Quality Power (Desired)		
Set 11	70	0.93	3%	Quality Power (Desired)	Set 11	70	0.95	1%	Quality Power (Desired)		
Set 12	70	0.93	3%	Quality Power (Desired)	Set 12	70	0.95	1%	Quality Power (Desired)		
Set 13	70	0.93	3%	Quality Power (Desired)	Set 13	70	0.95	1%	Quality Power (Desired)		
Set 14	70	0.93	3%	Quality Power (Desired)	Set 14	70	0.95	1%	Quality Power (Desired)		
Set 15	70	0.93	3%	Quality Power (Desired)	Set 15	70	0.94	2%	Quality Power (Desired)		
Set 16	70	0.92	4%	Power (Not Desired)	Set 16	70	0.94	2%	Quality Power (Desired)		
Set 17	70	0.92	4%	Power (Not Desired)	Set 17	70	0.94	2%	Quality Power (Desired)		
Set 18	70	0.92	4%	Power (Not Desired)	Set 18	70	0.94	2%	Quality Power (Desired)		
Set 19	70	0.92	4%	Power (Not Desired)	Set 19	70	0.94	2%	Quality Power (Desired)		
Set 20	70	0.91	5%	Power (Not Desired)	Set 20	70	0.94	2%	Quality Power (Desired)		
Set 21	70	0.91	5%	Power (Not Desired)	Set 21	70	0.94	2%	Quality Power (Desired)		
Set 22	70	0.91	5%	Power (Not Desired)	Set 22	70	0.94	2%	Quality Power (Desired)		
Set 23	70	0.90	6%	Power (Not Desired)	Set 23	70	0.93	3%	Quality Power (Desired)		
Set 24	70	0.90	6%	Power (Not Desired)	Set 24	70	0.93	3%	Quality Power (Desired)		
Set 25	70	0.89	7%	Power (Not Desired)	Set 25	70	0.93	3%	Quality Power (Desired)		
Set 26	70	0.89	7%	Power (Not Desired)	Set 26	70	0.93	3%	Quality Power (Desired)		
Set 27	70	0.89	7%	Power (Not Desired)	Set 27	70	0.93	3%	Quality Power (Desired)		
Set 28	70	0.88	8%	Power (Not Desired)	Set 28	70	0.93	3%	Quality Power (Desired)		
Set 29	71	0.88	8%	Power (Not Desired)	Set 29	70	0.92	4%	Power		

Quality Training -Maintain Velocity

- By maintaining velocity:
 - Explosive, type II fibers trained
 - Energy systems trained similar to RSA sport
 - Max intensity, recover, repeat
 - Timed sets beneficial
 - Maximal neural drive
- Weekly set-up
 - Volume at end of week
- All allow maximal power at the given load

Day 1/2

Day 3/4

Day 5

Quality Training - Methods to Maintain Velocity

- Cluster sets (13,14,15)
 - Small rest between reps
- Target velocity sets
 - Determine aimed velocity
 - Start at weight that this speed is easily reached
 - 2 reps and keep fastest speed
 - Goal is to create new 1RM at desired speed
- Cutoff/drop-off sets
- Ultimate goal: maintain quality training

Quality Training -Measurement

• Target velocity sets

- Goal of 1.0 m/s (example)
- Increase until goal not met
- Allow adequate rest
 - Between reps and sets
 - Depends on desired adaptation
- Continue until first set is below desired velocity
- Know desired speed and maximize force production at given velocity
- Leads to optimal power at that moment at specific point on F-V curve

Set #	Reps	Load (lbs)	Bar Speed (Fastest rep)					
1	2	175	1.2 m/s					
2	2	185	1.18 m/s					
3	2	195	1.12 m/s					
4	2	205	1.09 m/s					
5	2	215	1.04 m/s					
6	2	225	1.01 m/s					
7	2	235	0.98 m/s					
	Speed	Requirement	nt Not Met Try Again					
8	2	235	0.97 m/s					
		Redu	ce Load					
9	2	225	1.08 m/s					
10	2	230	1.0 m/s					
11	2	230	0.98 m/s					
Speed Requirement Not Met Try Again								
12	2	230	0.97 m/s					
Exercise Terminated								

Quality Training -Measurement

Cutoff/drop-off sets

- Set cutoff based on quality
 - Velocity or % change
- Set cutoff: -0.10 m/s
- Series cutoff: -0.05 m/s
 - Within first two reps of set

• Can use jump mat also

• Difficult because only testing at the end of the set, not actual movement

Quality Training -Measurement

- Long-term trends become available through tracking
 - Athlete 1 vs. Athlete 2
 - Same relative load
 - Reduced intent from athlete 2
 - Reduced adaptation realization
- Begin to predict training effects on a micro and macro level
 - Good for in-season

Rate of Force Development (RFD)

- Ultimate goal is the production of power in the competitive event
 - Sports occur at the highest velocities available
 - Maximize the force production in the minimal time available
 - Maximal force requires 0.3-0.4 seconds
 - Elite sprinters ground contact time is 0.08-0.12 seconds
- Strength is great, but if it doesn't translate to the field then it is useless
- Must train with maximal intent at high velocities
 - Strength production gains are velocity specific ^(16,17)

RFD Adaptations Based on Training

• Must be trained for in biphasic manner

- Early phase
 - Neural drive
 - Maximal intent
 - "Speed"
- Late phase
 - Force producing capabilities of muscle
 - Cross-sectional area
 - "Strength"
- Need both for success

RFD Adaptations Based on Training

- Early phase RFD linked to skill acquisition
 - Motor unit recruitment
 - Maximal intent
 - Rate coding
 - Increased doublets with increased velocity of movement ⁽¹⁸⁾
 - Muscle synchronization ⁽¹⁸⁾
 - Appropriate exercise implementation
 - Transfer of training

• **RFD Adaptations**

			0					
Wea	k athlete	Load	Stron	ig athlete	Load	Advan	ced Athlete	Load
Week 1	Regular back Squat	Above 80%	Week 1	Regular back Squat	Above 80%	Week 1	Regular back Squat	55 to 80%
Week 2	Regular back Squat	Above 80%	Week 2	Regular back Squat	Above 80%	Week 2	Regular back Squat	55 to 80%
Week 3	Regular back Squat	Above 80%	Week 3	Regular back Squat	Above 80%	Week 3	Regular back Squat	55 to 80%
Week 4	Regular back Squat	Above 80%	Week 4	Regular back Squat	Above 80%	Week 4	Regular back Squat	55 to 80%
Week 5	Regular back Squat	Above 80%	Week 5	Sport Back Squat	55 to 80%	Week 5	Sport Back Squat	Above 80%
Week 6	Regular back Squat	Above 80%	Week 6	Sport Back Squat	55 to 80%	Week 6	Sport Back Squat	Above 80%
Week 7	Regular back Squat	Above 80%	Week 7	Sport Back Squat	Below 55%	Week 7	Sport Back Squat	Below 55%
Week 8	Sport Back Squat	55 to 80%	Week 8	Sport Back Squat	Below 55%	Week 8	Sport Back Squat	Below 55%
Week 9	Sport Back Squat	55 to 80%	Week 9	Sport Back Squat	Below 55%	Week 9	Sport Back Squat	Below 55%
Week 10	Sport Back Squat	Below 55%	Week 10	Sport Back Squat	Below 55%	Week 10	Sport Back Squat	Below 55%
Week 11	Sport Back Squat	Below 55%	Week 11	Sport Back Squat	Below 55%	Week 11	Sport Back Squat	Below 55%
Week 12	Sport Back Squat	Below 55%	Week 12	Sport Back Squat	Below 55%	Week 12	Sport Back Squat	Below 55%
Wea	k athlete	Load	Stron	ng athlete	Load	Advan	ced Athlete	Load
Week 1	Regular back Squat	Above 80%	Week 1	Sport Back Squat	55 to 80%	Week 1	Sport Back Squat	Above 80%
Week 2	Regular back Squat	Above 80%	Week 2	Sport Back Squat	55 to 80%	Week 2	Sport Back Squat	Above 80%
Week 3	Regular back Squat	Above 80%	Week 3	Sport Back Squat	Below 55%	Week 3	Sport Back Squat	Below 55%
Week 4	Sport Back Squat	55 to 80%	Week 4	Sport Back Squat	Below 55%	Week 4	Sport Back Squat	Below 55%
Week 5	Sport Back Squat	55 to 80%	Week 5	Sport Back Squat	Below 55%	Week 5	Sport Back Squat	Below 55%
Week 6	Sport Back Squat	Below 55%	Week 6	Sport Back Squat	Below 55%	Week 6	Sport Back Squat	Below 55%
Week 7	Sport Back Squat	Below 55%	Week 7	Sport Back Squat	Below 55%	Week 7	Sport Back Squat	Below 55%
Week 8	Sport Back Squat	Below 55%	Week 8	Sport Back Squat	Below 55%	Week 8	Sport Back Squat	Below 55%
Wea	k athlete	Load	Stror	ig athlete	Load	Advan	ced Athlete	Load
Week 1	Regular back Squat	Above 80%	Week 1	Sport Back Squat	55 to 80%	Week 1	Sport Back Squat	Below 55%
Week 2	Sport Back Squat	Above 80%	Week 2	Sport Back Squat	Below 55%	Week 2	Sport Back Squat	Below 55%
Week 3	Sport Back Squat	Above 80%	Week 3	Sport Back Squat	Below 55%	Week 3	Sport Back Squat	55 to 80%
Week 4	Sport Back Squat	Below 55%	Week 4	Sport Back Squat	Below 55%	Week 4	Sport Back Squat	Below 55%
Week 5	Sport Back Squat	Below 55%	Week 5	Sport Back Squat	Below 55%	Week 5	Sport Back Squat	Below 55%
Week 6	Sport Back Squat	Below 55%	Week 6	Sport Back Squat	Below 55%	Week 6	Sport Back Squat	Below 55%

RFD Training Options

- French contrast
 - Considers speeds at, just above, and just below competition movements
 - Increases motor learning at velocities when programmed correctly
 - <u>Running progressions for transfer of training</u>
- Oscillatory training
 - Disadvantageous vs. advantageous positions
- Partial training
- Specific joint angle <u>Peaking back squat</u>
- Accelerated movements

RFD Training Options

- French Contrast
- Transfer of Training

French Contrast Method Based on Running Quality										
Velocity	Acceleration	Max Velocity	Change of Direction							
Same Velocity	Hurdle Hops for Distance	Hurdle Hops for Distance	Lateral Hurdle Hops							
Lower Velocity	Sled Resisted Starts	Resisted Treadmill Run	Band Resisted Shuffle							
Higher Velocity	Accelerated Band Bounds	Accelerated Partner Sprints	Accelerated Lateral Band Bounds							

Progression Based on Block Training										
Block Parameters	Quality Trained									
DIOCK Parameters	Acceleration	Maximal Velocity	Change of Direction							
Above 80%	Lighter sleds for technique to start Increase weight to maximize strength	Resisted treadmill running	Resisted lateral training							
55-80%	Lighten sled load to increase velocity of training	Flying 40's maintaining proper technique	Decreased resistance lateral training							
Below 55%	Unloaded starts for mastery of acceleration technique	Overspeed training with partner	Unloaded lateral training with reactive response							

RFD - Accelerated Movements

RFD Training Outcome

- RFD through each phase
- SSC addressed
 - "V" of athlete

Force

RFD Training Outcome

Rate of Force Absorption (RFA)

- Force absorption just as critical for athlete success
 - Reduced injury likelihood
 - Lower force production = slower athlete
 - Lower force absorption = injured athlete
- Must have ability to "throw on the brakes"
- Further enhances SSC power and efficiency
- Addressed through OC, AFSM (push-pull), and other "rapid eccentrics"
 - "pulling-in" on jumping leads to greater SSC utilization and efficient power

Athlete Individualization

- Know athlete's needs
- Ask the vital questions?
 - What are the requirements of their sport/position
 - O-line vs. DB
 - Are they "strong enough"? Relative and absolute?
 - Training age?
 - Response to previous training?
 - Why long-term tracking is beneficial
- Allows efficient programming on F-V curve based on needs

Athlete Individualization

• F-V profiling (if an option)

- Determines slope of an athlete's production capabilities ⁽¹⁷⁾
- Train the "missing link"

Athlete Individualization -Autoregulation (In-Season)

- Jump mat testing
 - Quick and easy
 - Athlete grouping based on "fiber type" or individual basis
 - All about appropriate stress
 - Autoregulation article

University of Denver Men's Lacrosse Jump Testing (Just Jump - Hands on Hips) (Best of 3 Jumps)														
Name	01/04/2015 (Baseline)	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Athlete 1	26.3	24.2	25.1	25.1	24.1	24.6	23.7	23.3	24	23.6	22	23.6	25.6	25.3
Athlete 2	27.5	26.5	25	27.3	27.1	26.8	26.5	25.6	25.9	26.3	25.8	27.7	27.9	29.7
Athlete 3	27.8	25.7	25.9	25.3	26.3	25	24.6	26.3	24.7	26.1	24.9	25.6	26.6	27
Athlete 4	24.3	22.1	23.3	23.9	24.8	23.9	25.1	22.5	22.6	23.1	24.1	23.8	25.1	26.1
Athlete 5	26	26.6	25.2	23.4	26.5	25.6	27.9	26.4	26	27.9	26.2	27.6	25.8	27.1
Athlete 6	22.6	22.4	23.4	22.1	21.5	22.7	23.1	23.8	21.8	22.1	22	22.4	22.8	22.9
Athlete 7	23	22.8	22.4	23.1	21.9	23	22.1	20.7	20.2	20.7	20.5	22.6	22.4	21.4
Athlete 8	25.6	22.4	23.5	23.5	24.6	24.6	24.7	24	24.2	24.9	24.4	23.6	24.3	23.3
Athlete 9	26.9	26	28.8	27	27.6	26.3	26.8	27.3	26.5	25.8	26	26.9	27.4	27.8
Athlete 10	20	20.9	22	21.9	21.5	22.3	22.7	20.7	19.8	21.4	22.7	21.9	21.8	23.3
Average Jump Height	25	24	24.5	24.3	24.6	24.5	24.7	24.1	23.6	24.2	23.9	24.6	25	25.4
Change From Baseline (%)		95.84%	97.84%	97.04%	98.36%	97.92%	98.88%	96.24%	94.28%	96.76%	95.44%	98.28%	99.88%	101.56%
Week to We	ek Change (%)		102.09%	99.18%	101.36%	99.55%	100.98%	97.33%	97.96%	102.63%	98.64%	102.98%	101.63%	101.68%

Power Training Manual											
Pre	Pre-Training, Multi-Dimensional Warm-Up										
Block 1	Lower Body Warm-up										
Order	Exercise	Sets	Reps	/Duration	Load	Notes					
Α	<u>Hex Bar Deadlift</u>	1,1,1	х	5,3,3	50-80%	Warm-Up					
Perform A as a Warm-Up for Heavier Sets											
		1:00 Mir	nute Res	t Between Set	ts						
Block 2			Lowe	r Body Pow	<u>/er</u>						
<u>Order</u>	Exercise	Sets	Reps	/Duration	Load	Notes					
Α	Jump Mat Vertical Testing	AMAP	х	2	BW	Max Height Jump					
В	Hex Bar Deadlift	AMAP	х	1,1	65- 70%	Cluster Singles					
C	<u>JOP Plyo</u>	AMAP	Х	3 EA		SL Deceleration, Low Impact					
	Perform A-C S	Simultane	eously ur	ntil 5% Drop ir	n Vertical Jum	0					
	10 Seconds Rest Betwe	een Clust	er Repet	itions; 1:30 m	ninutes betwe	en Rounds					
Block 3			Upper	Body Warn	<u>n-up</u>						
Order	Exercise	Sets	Reps	/Duration	Load	Notes					
Α	Bench Press	1,1,1	х	5,3,3	50-80%	Warm-Up					
В	Mini-Band Scap Wall Walks	3	х	10 EA	Green						
	Perform A & B Series Si	imultane	ously for	3 Sets as a W	/arm-Up for H	eavier Sets					
		1:00 Mir	nute Res	t Between Set	ts						
Block 4			Uppe	er Body Pow	/er						
<u>Order</u>	Exercise	Sets	Reps	/Duration	Load	Notes					
Α	Bench Press	4	х	2,2	65- 70%	Cluster Doubles					
B	One Arm Med Ball Pass	4	х	5 EA		Use Hips					
_	Per	form A-E	3 Simulta	neously for 4	Sets						
	25 Seconds Rest E	Between	Exercise	s; 2:00 minute	es <mark>bet</mark> ween Ro	ounds					
Block 5			Lower	Auxiliary Po	ower						
<u>Order</u>	Exercise	Sets	Reps	/Duration	Load	Notes					
Α	<u>DB Step Up</u>	3	Х	5 EA	65-70%						
B	Split Stance Cable Rot. Row	3	х	5 EA							
С	DB RDL	3	Х	5							
	Per	form A-0	C Simulta	neously for 3	Sets						
	30 Seconds Rest Between Exercises										

Conclusion

- Create usable strength for athletes
 - Strength lays foundation, but not end goal for elite athletes
- Complete quality programming
 - Energy system development early in off-season
 - More specific to requirements of RSA sports
 - Maintain velocity by minimizing fatigue
- Understand your athletes needs on an individual/group basis
 - Autoregulate to attain desired stress/adaptation
 - Prepare athletes to WIN, at macro and micro levels
- Keep your goal, the goal
 - On-field performance and efficiency
 - Maximize power at desired velocity
 - Work general to specific

References

- 1. Oliveira, F., Oliveira, A., Rizatto, and G., Denadai, S. (2013). Resistance training for explosive and maximal strength; effects on early and late rate of force development. Journal of Sports Science and Medicine, 12(3), 402-408.
- 2. Tillin, N., and Folland, J. (2014). Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. European Journal of Applied Physiology, 114(2) 365-374. doi:10.1007/s00421-013-2781-x.
- 3. Oliveira, F., Rizatto, G., and Denadai, B. (2013). Are early and late rate of force development differently influenced by fast-velocity resistance training? Clinical Physiology and Functional Imaging, 33(4) 282-287. doi:10.1111/cpf.12025.
- 4. Moritani, T. Time course adaptations during strength and power training. Mechanisms of Adaptation (266-278).
- 5. Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7(JAN):1-13. doi:10.3389/fphys.2016.00677.
- 6. Randell, A.D., Cronin, JB, Keogh, JW, Gill N.D., and Pedersen, MC. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. J Strength Cond Res 25: 87-93,.

References

- 7. Pupo, J. D., & Detanico, D. (2011). Kinetic Parameters as Determinants of Vertical Jump Performance. Brazilian Journal of Kinanthropometry and Human Performance, 14(1), 41-51. http://doi.org/10.5007/19800037.2012v14n1p41.
- 8. Newton RU, Kraemer WJ, Hakkinen K, Humphries BJ, Murphy AJ. Kinematics, Kinetics, and Muscle Activation During Explosive Upper Body Movements. 1996:37-43.
- 9. Zatsiorsky, VM and Kraemer, W. J. (1995) Science and practice of strength and conditioning Champain, IL; Human Kinetics
- 10. Andersen, L., Andersen, J., Zebis, M., Aagaard, P. (2009). Early and late rate of force development: differential adaptive responses to resistance training? Scandinavian Journal of Medicine & Science in Sports, 20(1), 162-169. doi:10.1111/j.1600-0838.2009.00933.x.
- 11. Tillin, N., Pain, M., Folland, J. (2012) Short-term training for explosive strength causes neural and mechanical adaptations. Experimental Physiology, 97(5), 630-641.doi:10.1113/expphysiol.2011.063040.
- 12. Verkoshansky, Y, Siff, M. (2009). Supertraining (6th ed.). Rome, Italy.
- 13. Tufano JJ, Conlon JA, Nimphius S, et al. Maintenance of Velocity and Power With Cluster Sets During High-Volume Back Squats. 2016:885-892.

References

- 14. Lawrence MM. Effect of cluster set configurations on power clean technique.2012;(November). doi:10.1080/02640414.2012.736633.Lawrence, M.M. 2012.
- 15. Tufano JJ, Brown, LE, Haff, GG. (2017). Theoretical and Practical Aspects of Different Cluster Set Structures: A Systematic Review. Journal of Strength & Conditioning Research, 31(3): 848-867. doi: 10.1519/JSC.00000000001581.
- 16. Rodgers, M. M., & Whipple, R. H. (1990). Specificity of speed of exercise. The Journal of Orthopedic and Sports Physical Therapy, 12(2), 72-78.
- 17. Jiminez-Reyes, P., Samozino, P., Brughelli, M., Morin, J. B. Force-Velocity Optimized Training for Jump Performance. Frontiers in Physiology. doi: 10.3389/fphys.2016.00677.
- 18. Cormie, P., McGuigan, M., Newton, R. (2011). Developing maximal neuromuscular power: part 1 biological basis of maximal power production. Sports Medicine, 41(1), 17-38. doi:10.2165/11537690-00000000-00000.